

Python State Machine

Github [https://github.com/pgularski/pysm/] |
PyPI [https://pypi.python.org/pypi/pysm/]

The State Pattern [https://en.wikipedia.org/wiki/State_pattern]
solves many problems, untangles the code and saves one’s sanity.
Yet.., it’s a bit rigid and doesn’t scale. The goal of this library is to give
you a close to the State Pattern simplicity with much more flexibility. And,
if needed, the full state machine functionality, including FSM [https://en.wikipedia.org/wiki/Finite-state_machine], HSM [https://en.wikipedia.org/wiki/UML_state_machine#Hierarchically_nested_states], PDA [https://en.wikipedia.org/wiki/Pushdown_automaton] and other tasty things.

	Goals:

	
	Provide a State Pattern-like behavior with more flexibility

	Be explicit and don’t add any code to objects

	Handle directly any kind of event (not only strings) - parsing strings is
cool again!

	Keep it simple, even for someone who’s not very familiar with the FSM
terminology

	Module documentation

	Installation

	Examples
	Simple state machine

	Complex hierarchical state machine

	Different ways to attach event handlers

	Reverse Polish notation calculator

Module documentation

Python State Machine

The goal of this library is to give you a close to the State Pattern
simplicity with much more flexibility. And, if needed, the full state machine
functionality, including FSM [https://en.wikipedia.org/wiki/Finite-state_machine], HSM [https://en.wikipedia.org/wiki/UML_state_machine#Hierarchically_nested_states], PDA [https://en.wikipedia.org/wiki/Pushdown_automaton] and other tasty things.

	Goals:

	
	Provide a State Pattern-like behavior with more flexibility

	Be explicit and don’t add any code to objects

	Handle directly any kind of event (not only strings) - parsing strings is
cool again!

	Keep it simple, even for someone who’s not very familiar with the FSM
terminology

	
class pysm.pysm.AnyEvent

	Bases: object [https://docs.python.org/3/library/functions.html#object]

hash(object()) doesn’t work in MicroPython therefore the need for this
class.

	
class pysm.pysm.Event(name, input=None, **cargo)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Triggers actions and transition in StateMachine.

Events are also used to control the flow of data propagated to states
within the states hierarchy.

Event objects have the following attributes set after an event has been
dispatched:

Attributes:

	
state_machine

	A StateMachine instance that is handling the event (the one whose
pysm.pysm.StateMachine.dispatch() method is called)

	
propagate

	An event is propagated from a current leaf state up in the states
hierarchy until it encounters a handler that can handle the event.
To propagate it further, it has to be set to True in a handler.

	Parameters

	
	name (Hashable) – Name of an event. It may be anything as long as it’s hashable.

	input (Hashable) – Optional input. Anything hashable.

	**cargo – Keyword arguments for an event, used to transport data to
handlers. It’s added to an event as a cargo property of type dict.
For enter and exit events, the original event that triggered a
transition is passed in cargo as source_event entry.

Example Usage:

state_machine.dispatch(Event('start'))
state_machine.dispatch(Event('start', key='value'))
state_machine.dispatch(Event('parse', input='#', entity=my_object))
state_machine.dispatch(Event('%'))
state_machine.dispatch(Event(frozenset([1, 2])))

	
class pysm.pysm.State(name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a state in a state machine.

enter and exit handlers are called whenever a state is entered or
exited respectively. These action names are reserved only for this purpose.

It is encouraged to extend this class to encapsulate a state behavior,
similarly to the State Pattern.

Once it’s extended, the preferred way of adding an event handlers is
through the register_handlers() hook. Usually,
there’s no need to create the __init__() in a subclass.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human readable state name

Example Usage:

Extending State to encapsulate state-related behavior. Similar to the
State Pattern.
class Running(State):
 def on_enter(self, state, event):
 print('Running state entered')

 def on_jump(self, state, event):
 print('Jumping')

 def on_dollar(self, state, event):
 print('Dollar found!')

 def register_handlers(self):
 self.handlers = {
 'enter': self.on_enter,
 'jump': self.on_jump,
 '$': self.on_dollar
 }

Different way of attaching handlers. A handler may be any function as
long as it takes `state` and `event` args.
def another_handler(state, event):
 print('Another handler')

running = State('running')
running.handlers = {
 'another_event': another_handler
}

	
is_substate(state)

	Check whether the state is a substate of self.

Also self is considered a substate of self.

	Parameters

	state (State) – State to verify

	Returns

	True if state is a substate of self, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
register_handlers()

	Hook method to register event handlers.

It is used to easily extend State class. The hook is called from
within the base State.__init__(). Usually, the
__init__() doesn’t have to be created in a subclass.

Event handlers are kept in a dict, with events’ names as keys,
therefore registered events may be of any hashable type.

Handlers take two arguments:

	
	state: The current state that is handling an event. The same

	handler function may be attached to many states, therefore it
is helpful to get the handling state’s instance.

	
	event: An event that triggered the handler call. If it is an

	enter or exit event, then the source event (the one that
triggered the transition) is passed in event’s cargo
property as cargo.source_event.

Example Usage:

class On(State):
 def handle_my_event(self, state, event):
 print('Handling an event')

 def register_handlers(self):
 self.handlers = {
 'my_event': self.handle_my_event,
 '&': self.handle_my_event,
 frozenset([1, 2]): self.handle_my_event
 }

	
class pysm.pysm.StateMachine(name)

	Bases: pysm.pysm.State

State machine controls actions and transitions.

To provide the State Pattern-like behavior, the formal state machine rules
may be slightly broken, and instead of creating an internal transition [https://en.wikipedia.org/wiki/UML_state_machine#Internal_transitions]
for every action that doesn’t require a state change, event handlers may be
added to states. These are handled first when an event occurs. After that
the actual transition is called, calling enter/exit actions and other
transition actions. Nevertheless, internal transitions are also supported.

So the order of calls on an event is as follows:

	State’s event handler

	condition callback

	before callback

	exit handlers

	action callback

	enter handlers

	after callback

If there’s no handler in states or transition for an event, it is silently
ignored.

If using nested state machines, all events should be sent to the root state
machine.

Attributes:

	
state

	Current, local state (instance of State) in a state machine.

	
stack

	Stack that can be used if the Pushdown Automaton (PDA) [https://en.wikipedia.org/wiki/Pushdown_automaton] functionality
is needed.

	
state_stack

	Stack of previous local states in a state machine. With every
transition, a previous state (instance of State) is pushed to the
state_stack. Only StateMachine.STACK_SIZE (32
by default) are stored and old values are removed from the stack.

	
leaf_state_stack

	Stack of previous leaf states in a state machine. With every
transition, a previous leaf state (instance of State) is pushed
to the leaf_state_stack. Only
StateMachine.STACK_SIZE (32 by default) are
stored and old values are removed from the stack.

	leaf_state

	See the leaf_state property.

	root_machine

	See the root_machine property.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human readable state machine name

Note

StateMachine extends State and therefore it is possible to always
use a StateMachine instance instead of the State. This wouldn’t
be a good practice though, as the State class is designed to be as
small as possible memory-wise and thus it’s more memory efficient. It
is valid to replace a State with a StateMachine later on if there’s
a need to extend a state with internal states.

Note

For the sake of speed thread safety isn’t guaranteed.

Example Usage:

state_machine = StateMachine('root_machine')
state_on = State('On')
state_off = State('Off')
state_machine.add_state('Off', initial=True)
state_machine.add_state('On')
state_machine.add_transition(state_on, state_off, events=['off'])
state_machine.add_transition(state_off, state_on, events=['on'])
state_machine.initialize()
state_machine.dispatch(Event('on'))

	
add_state(state, initial=False)

	Add a state to a state machine.

If states are added, one (and only one) of them has to be declared as
initial.

	Parameters

	
	state (State) – State to be added. It may be an another StateMachine

	initial (bool [https://docs.python.org/3/library/functions.html#bool]) – Declare a state as initial

	
add_states(*states)

	Add states to the StateMachine.

To set the initial state use
set_initial_state().

	Parameters

	states (State) – A list of states to be added

	
add_transition(from_state, to_state, events, input=None, action=None, condition=None, before=None, after=None)

	Add a transition to a state machine.

All callbacks take two arguments - state and event. See parameters
description for details.

It is possible to create conditional if/elif/else-like logic for
transitions. To do so, add many same transition rules with different
condition callbacks. First met condition will trigger a transition, if
no condition is met, no transition is performed.

	Parameters

	
	from_state (State) – Source state

	to_state (State, None) – Target state. If None, then it’s an internal
transition [https://en.wikipedia.org/wiki/UML_state_machine#Internal_transitions]

	events (Iterable of Hashable) – List of events that trigger the transition

	input (None, Iterable of Hashable) – List of inputs that trigger the transition. A transition
event may be associated with a specific input. i.e.: An event may
be parse and an input associated with it may be $. May be
None (default), then every matched event name triggers a
transition.

	action (Callable) – Action callback that is called during the transition
after all states have been left but before the new one is entered.

action callback takes two arguments:

	state: Leaf state before transition

	event: Event that triggered the transition

	condition (Callable) – Condition callback - if returns True transition may
be initiated.

condition callback takes two arguments:

	state: Leaf state before transition

	event: Event that triggered the transition

	before (Callable) – Action callback that is called right before the
transition.

before callback takes two arguments:

	state: Leaf state before transition

	event: Event that triggered the transition

	after (Callable) – Action callback that is called just after the transition

after callback takes two arguments:

	state: Leaf state after transition

	event: Event that triggered the transition

	
dispatch(event)

	Dispatch an event to a state machine.

If using nested state machines (HSM), it has to be called on a root
state machine in the hierarchy.

	Parameters

	event (Event) – Event to be dispatched

	
initial_state

	Get the initial state in a state machine.

	Returns

	Initial state in a state machine

	Return type

	State

	
initialize()

	Initialize states in the state machine.

After a state machine has been created and all states are added to it,
initialize() has to be called.

If using nested state machines (HSM),
initialize() has to be called on a root
state machine in the hierarchy.

	
is_substate(state)

	Check whether the state is a substate of self.

Also self is considered a substate of self.

	Parameters

	state (State) – State to verify

	Returns

	True if state is a substate of self, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
leaf_state

	Get the current leaf state.

The state property gives the current,
local state in a state machine. The leaf_state goes to the bottom in
a hierarchy of states. In most cases, this is the property that should
be used to get the current state in a state machine, even in a flat
FSM, to keep the consistency in the code and to avoid confusion.

	Returns

	Leaf state in a hierarchical state machine

	Return type

	State

	
register_handlers()

	Hook method to register event handlers.

It is used to easily extend State class. The hook is called from
within the base State.__init__(). Usually, the
__init__() doesn’t have to be created in a subclass.

Event handlers are kept in a dict, with events’ names as keys,
therefore registered events may be of any hashable type.

Handlers take two arguments:

	
	state: The current state that is handling an event. The same

	handler function may be attached to many states, therefore it
is helpful to get the handling state’s instance.

	
	event: An event that triggered the handler call. If it is an

	enter or exit event, then the source event (the one that
triggered the transition) is passed in event’s cargo
property as cargo.source_event.

Example Usage:

class On(State):
 def handle_my_event(self, state, event):
 print('Handling an event')

 def register_handlers(self):
 self.handlers = {
 'my_event': self.handle_my_event,
 '&': self.handle_my_event,
 frozenset([1, 2]): self.handle_my_event
 }

	
revert_to_previous_leaf_state(event=None)

	Similar to set_previous_leaf_state()
but the current leaf_state is not saved on the stack of states. It
allows to perform transitions further in the history of states.

	
root_machine

	Get the root state machine in a states hierarchy.

	Returns

	Root state in the states hierarchy

	Return type

	StateMachine

	
set_initial_state(state)

	Set an initial state in a state machine.

	Parameters

	state (State) – Set this state as initial in a state machine

	
set_previous_leaf_state(event=None)

	Transition to a previous leaf state. This makes a dynamic transition
to a historical state. The current leaf_state is saved on the stack
of historical leaf states when calling this method.

	Parameters

	event (Event) – (Optional) event that is passed to states involved in the
transition

	
exception pysm.pysm.StateMachineException

	Bases: exceptions.Exception

All StateMachine exceptions are of this type.

Installation

Install pysm from PyPI [https://pypi.python.org/pypi/pysm/]:

pip install pysm

or clone the Github pysm repository [https://github.com/pgularski/pysm/]:

git clone https://github.com/pgularski/pysm
cd pysm
python setup.py install

Examples

	Simple state machine

	Complex hierarchical state machine

	Different ways to attach event handlers

	Reverse Polish notation calculator

Simple state machine

This is a simple state machine with only two states - on and off.

from pysm import State, StateMachine, Event

on = State('on')
off = State('off')

sm = StateMachine('sm')
sm.add_state(on, initial=True)
sm.add_state(off)

sm.add_transition(on, off, events=['off'])
sm.add_transition(off, on, events=['on'])

sm.initialize()

def test():
 assert sm.state == on
 sm.dispatch(Event('off'))
 assert sm.state == off
 sm.dispatch(Event('on'))
 assert sm.state == on

if __name__ == '__main__':
 test()

Complex hierarchical state machine

A Hierarchical state machine similar to the one from Miro Samek’s book 1,
page 95. It is a state machine that contains all possible state transition
topologies up to four levels of state nesting 2

[image: _images/complex_hsm.png]
from pysm import State, StateMachine, Event

foo = True

def on_enter(state, event):
 print('enter state {0}'.format(state.name))

def on_exit(state, event):
 print('exit state {0}'.format(state.name))

def set_foo(state, event):
 global foo
 print('set foo')
 foo = True

def unset_foo(state, event):
 global foo
 print('unset foo')
 foo = False

def action_i(state, event):
 print('action_i')

def action_j(state, event):
 print('action_j')

def action_k(state, event):
 print('action_k')

def action_l(state, event):
 print('action_l')

def action_m(state, event):
 print('action_m')

def action_n(state, event):
 print('action_n')

def is_foo(state, event):
 return foo is True

def is_not_foo(state, event):
 return foo is False

m = StateMachine('m')
s0 = StateMachine('s0')
s1 = StateMachine('s1')
s2 = StateMachine('s2')
s11 = State('s11')
s21 = StateMachine('s21')
s211 = State('s211')

m.add_state(s0, initial=True)
s0.add_state(s1, initial=True)
s0.add_state(s2)
s1.add_state(s11, initial=True)
s2.add_state(s21, initial=True)
s21.add_state(s211, initial=True)

Internal transitions
m.add_transition(s0, None, events='i', action=action_i)
s0.add_transition(s1, None, events='j', action=action_j)
s0.add_transition(s2, None, events='k', action=action_k)
s1.add_transition(s11, None, events='h', condition=is_foo, action=unset_foo)
s1.add_transition(s11, None, events='n', action=action_n)
s21.add_transition(s211, None, events='m', action=action_m)
s2.add_transition(s21, None, events='l', condition=is_foo, action=action_l)

External transition
m.add_transition(s0, s211, events='e')
s0.add_transition(s1, s0, events='d')
s0.add_transition(s1, s11, events='b')
s0.add_transition(s1, s1, events='a')
s0.add_transition(s1, s211, events='f')
s0.add_transition(s1, s2, events='c')
s0.add_transition(s2, s11, events='f')
s0.add_transition(s2, s1, events='c')
s1.add_transition(s11, s211, events='g')
s21.add_transition(s211, s0, events='g')
s21.add_transition(s211, s21, events='d')
s2.add_transition(s21, s211, events='b')
s2.add_transition(s21, s21, events='h', condition=is_not_foo, action=set_foo)

Attach enter/exit handlers
states = [m, s0, s1, s11, s2, s21, s211]
for state in states:
 state.handlers = {'enter': on_enter, 'exit': on_exit}

m.initialize()

def test():
 assert m.leaf_state == s11
 m.dispatch(Event('a'))
 assert m.leaf_state == s11
 # This transition toggles state between s11 and s211
 m.dispatch(Event('c'))
 assert m.leaf_state == s211
 m.dispatch(Event('b'))
 assert m.leaf_state == s211
 m.dispatch(Event('i'))
 assert m.leaf_state == s211
 m.dispatch(Event('c'))
 assert m.leaf_state == s11
 assert foo is True
 m.dispatch(Event('h'))
 assert foo is False
 assert m.leaf_state == s11
 # Do nothing if foo is False
 m.dispatch(Event('h'))
 assert m.leaf_state == s11
 # This transition toggles state between s11 and s211
 m.dispatch(Event('c'))
 assert m.leaf_state == s211
 assert foo is False
 m.dispatch(Event('h'))
 assert foo is True
 assert m.leaf_state == s211
 m.dispatch(Event('h'))
 assert m.leaf_state == s211

if __name__ == '__main__':
 test()

Different ways to attach event handlers

A state machine and states may be created in many ways. The code below mixes
many styles to demonstrate it (In production code you’d rather keep your code
style consistent). One way is to subclass the State class and attach event
handlers to it. This resembles the State Pattern way of writing a state
machine. But handlers may live anywhere, really, and you can attach them
however you want. You’re free to chose your own style of writing state machines
with pysm.
Also in this example a transition to a historical state is used.

[image: _images/oven_hsm.png]
import threading
import time
from pysm import StateMachine, State, Event

It's possible to encapsulate all state related behaviour in a state class.
class HeatingState(StateMachine):
 def on_enter(self, state, event):
 oven = event.cargo['source_event'].cargo['oven']
 if not oven.timer.is_alive():
 oven.start_timer()
 print('Heating on')

 def on_exit(self, state, event):
 print('Heating off')

 def register_handlers(self):
 self.handlers = {
 'enter': self.on_enter,
 'exit': self.on_exit,
 }

class Oven(object):
 TIMEOUT = 0.1

 def __init__(self):
 self.sm = self._get_state_machine()
 self.timer = threading.Timer(Oven.TIMEOUT, self.on_timeout)

 def _get_state_machine(self):
 oven = StateMachine('Oven')
 door_closed = StateMachine('Door closed')
 door_open = State('Door open')
 heating = HeatingState('Heating')
 toasting = State('Toasting')
 baking = State('Baking')
 off = State('Off')

 oven.add_state(door_closed, initial=True)
 oven.add_state(door_open)
 door_closed.add_state(off, initial=True)
 door_closed.add_state(heating)
 heating.add_state(baking, initial=True)
 heating.add_state(toasting)

 oven.add_transition(door_closed, toasting, events=['toast'])
 oven.add_transition(door_closed, baking, events=['bake'])
 oven.add_transition(door_closed, off, events=['off', 'timeout'])
 oven.add_transition(door_closed, door_open, events=['open'])

 # This time, a state behaviour is handled by Oven's methods.
 door_open.handlers = {
 'enter': self.on_open_enter,
 'exit': self.on_open_exit,
 'close': self.on_door_close
 }

 oven.initialize()
 return oven

 @property
 def state(self):
 return self.sm.leaf_state.name

 def light_on(self):
 print('Light on')

 def light_off(self):
 print('Light off')

 def start_timer(self):
 self.timer.start()

 def bake(self):
 self.sm.dispatch(Event('bake', oven=self))

 def toast(self):
 self.sm.dispatch(Event('toast', oven=self))

 def open_door(self):
 self.sm.dispatch(Event('open', oven=self))

 def close_door(self):
 self.sm.dispatch(Event('close', oven=self))

 def on_timeout(self):
 print('Timeout...')
 self.sm.dispatch(Event('timeout', oven=self))
 self.timer = threading.Timer(Oven.TIMEOUT, self.on_timeout)

 def on_open_enter(self, state, event):
 print('Opening door')
 self.light_on()

 def on_open_exit(self, state, event):
 print('Closing door')
 self.light_off()

 def on_door_close(self, state, event):
 # Transition to a history state
 self.sm.set_previous_leaf_state(event)

def test_oven():
 oven = Oven()
 print(oven.state)
 assert oven.state == 'Off'
 oven.bake()
 print(oven.state)
 assert oven.state == 'Baking'
 oven.open_door()
 print(oven.state)
 assert oven.state == 'Door open'
 oven.close_door()
 print(oven.state)
 assert oven.state == 'Baking'
 time.sleep(0.2)
 print(oven.state)
 assert oven.state == 'Off'

if __name__ == '__main__':
 test_oven()

Reverse Polish notation calculator

A state machine is used in the Reverse Polish notation (RPN) [https://en.wikipedia.org/wiki/Reverse_Polish_notation] calculator as a
parser. A single event name (parse) is used along with specific inputs (See
pysm.pysm.StateMachine.add_transition()).

This example also demonstrates how to use the stack of a state machine, so it
behaves as a Pushdown Automaton (PDA) [https://en.wikipedia.org/wiki/Pushdown_automaton]

import string as py_string
from pysm import StateMachine, Event, State

class Calculator(object):
 def __init__(self):
 self.sm = self.get_state_machine()
 self.result = None

 def get_state_machine(self):
 sm = StateMachine('sm')
 initial = State('Initial')
 number = State('BuildingNumber')
 sm.add_state(initial, initial=True)
 sm.add_state(number)
 sm.add_transition(initial, number,
 events=['parse'], input=py_string.digits,
 action=self.start_building_number)
 sm.add_transition(number, None,
 events=['parse'], input=py_string.digits,
 action=self.build_number)
 sm.add_transition(number, initial,
 events=['parse'], input=py_string.whitespace)
 sm.add_transition(initial, None,
 events=['parse'], input='+-*/',
 action=self.do_operation)
 sm.add_transition(initial, None,
 events=['parse'], input='=',
 action=self.do_equal)
 sm.initialize()
 return sm

 def parse(self, string):
 for char in string:
 self.sm.dispatch(Event('parse', input=char))

 def calculate(self, string):
 self.parse(string)
 return self.result

 def start_building_number(self, state, event):
 digit = event.input
 self.sm.stack.push(int(digit))
 return True

 def build_number(self, state, event):
 digit = event.input
 number = str(self.sm.stack.pop())
 number += digit
 self.sm.stack.push(int(number))
 return True

 def do_operation(self, state, event):
 operation = event.input
 y = self.sm.stack.pop()
 x = self.sm.stack.pop()
 # eval is evil
 result = eval('float({0}) {1} float({2})'.format(x, operation, y))
 self.sm.stack.push(result)
 return True

 def do_equal(self, state, event):
 operation = event.input
 number = self.sm.stack.pop()
 self.result = number
 return True

def test_calc_callbacks():
 calc = Calculator()
 assert calc.calculate(' 167 3 2 2 * * * 1 - =') == 2003
 assert calc.calculate(' 167 3 2 2 * * * 1 - 2 / =') == 1001.5
 assert calc.calculate(' 3 5 6 + * =') == 33
 assert calc.calculate(' 3 4 + =') == 7
 assert calc.calculate('2 4 / 5 6 - * =') == -0.5

if __name__ == '__main__':
 test_calc_callbacks()

Footnotes

	1

	Miro Samek, Practical Statecharts in C/C++, CMP Books 2002. [http://www.amazon.com/Practical-Statecharts-Quantum-Programming-Embedded/dp/1578201101/ref=asap_bc?ie=UTF8]

	2

	http://www.embedded.com/print/4008251 (visited on 07.06.2016)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysm	

 	
 	
 pysm.pysm	

Index

 A
 | D
 | E
 | I
 | L
 | P
 | R
 | S

A

 	
 	add_state() (pysm.pysm.StateMachine method)

 	add_states() (pysm.pysm.StateMachine method)

 	
 	add_transition() (pysm.pysm.StateMachine method)

 	AnyEvent (class in pysm.pysm)

D

 	
 	dispatch() (pysm.pysm.StateMachine method)

E

 	
 	Event (class in pysm.pysm)

I

 	
 	initial_state (pysm.pysm.StateMachine attribute)

 	initialize() (pysm.pysm.StateMachine method)

 	
 	is_substate() (pysm.pysm.State method)

 	(pysm.pysm.StateMachine method)

L

 	
 	leaf_state (pysm.pysm.StateMachine attribute)

 	
 	leaf_state_stack (pysm.pysm.StateMachine attribute)

P

 	
 	propagate (pysm.pysm.Event attribute)

 	
 	pysm.pysm (module)

R

 	
 	register_handlers() (pysm.pysm.State method)

 	(pysm.pysm.StateMachine method)

 	
 	revert_to_previous_leaf_state() (pysm.pysm.StateMachine method)

 	root_machine (pysm.pysm.StateMachine attribute)

S

 	
 	set_initial_state() (pysm.pysm.StateMachine method)

 	set_previous_leaf_state() (pysm.pysm.StateMachine method)

 	stack (pysm.pysm.StateMachine attribute)

 	State (class in pysm.pysm)

 	
 	state (pysm.pysm.StateMachine attribute)

 	state_machine (pysm.pysm.Event attribute)

 	state_stack (pysm.pysm.StateMachine attribute)

 	StateMachine (class in pysm.pysm)

 	StateMachineException

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/oven_hsm.png
Door closed

enter/Heating on

Heating

*Hiistory

exit/Heating off *— close
Toastmg‘ ‘ Baking ‘ ‘ off ‘ Door open
enterigh_on
exitfight_off
o open

toast

bake

timeout

_static/ajax-loader.gif

_images/complex_hsm.png
s0
entry/
exit/
i/action_i
s s2
<9 Jentry/ entry/
exit/ exit/ ,
j/action_j K/action_k hitfoo)/ foo=1
sL1 s21
entry/ entry/
a exit/ exit/ <
r/action_n Iifocl/action_|
hifocl/ foo=0
b il s211
9 entry/ 9
b2 exit/ A
&7 miactionm [—

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Python State Machine

 		
 Module documentation

 		
 Installation

 		
 Examples

 		
 Simple state machine

 		
 Complex hierarchical state machine

 		
 Different ways to attach event handlers

 		
 Reverse Polish notation calculator

_static/img/oven_hsm.png
Door closed

enter/Heating on

Heating

*Hiistory

exit/Heating off *— close
Toastmg‘ ‘ Baking ‘ ‘ off ‘ Door open
enterigh_on
exitfight_off
o open

toast

bake

timeout

_static/up.png

_static/img/complex_hsm.png
s0
entry/
exit/
i/action_i
s s2
<9 Jentry/ entry/
exit/ exit/ ,
j/action_j K/action_k hitfoo)/ foo=1
sL1 s21
entry/ entry/
a exit/ exit/ <
r/action_n Iifocl/action_|
hifocl/ foo=0
b il s211
9 entry/ 9
b2 exit/ A
&7 miactionm [—

